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We consider Davydov’s biophysical model in the context of nonequilibrium statistical thermodynam-
ics. We show that excitations of the Davydov-soliton type that can propagate in the system, which are
strongly damped in near-equilibrium conditions, become near dissipation-free in the Fréhlich-Bose-
Einstein-like condensate and that this occurs after a certain threshold of pumped metabolic energy is
reached. This implies the propagation of excitations at long distances in such biosystems.

PACS number(s): 87.10.+e, 87.22.As, 05.70.Ln

In the 1970s Davydov showed that, due to particular
nonlinear interactions in biophysical systems, e.g., the a-
helix protein, a novel mechanism for the localization and
transport of vibrational energy is expected to arise in the
form of a solitary wave [1]. The subject was taken up by
a number of contributors, and a long list of results pub-
lished up to the first half of 1992 are discussed in the ex-
cellent review by Scott [2], who has also provided exten-
sive research on the subject [3]. As pointed out in that
review, one important open question concerning
Davydov’s soliton is that of its stability at normal physio-
logical conditions, or in other words, the possibility of
the excitation to transport energy (and so information) at
long distances in the living organism, in spite of the relax-
ation mechanisms that are expected to damp it out at
very short (micrometer) distances. We address this ques-
tion here. First we note that there is equivalence between
Davydov’s model and the one used by Frohlich [4,5], as
shown by Tuszynski et al. [6]. In Frohlich’s work it is
shown that, as a consequence of the nonlinear interac-
tions to which we have already referred, under appropri-
ate conditions a phenomenon akin to a Bose-Einstein
condensation may occur in the system, provided there is
a supply of metabolic energy exceeding a critical value.
We proceed to analyze both phenomena in the Frohlich-
Davydov model under arbitrary nonequilibrium condi-
tions. For that purpose we resort to an informational sta-
tistical thermodynamics based on the nonequilibrium sta-
tistical operator method (NSOM) [7]. The NSOM, which
provides microscopic foundations for phenomenological
irreversible thermodynamics [8], also allows for the con-
struction of a nonlinear generalized quantum transport
theory [9], which describes the evolution of the system at
the macroscopic level in arbitrary nonequilibrium situa-
tions, a formalism to be used in our analysis below.

The model consists of a biosystem that can sustain lon-
gitudinal polar vibrations in interaction with a thermal
bath of acousticlike vibrations. This interaction involves
all possible three-particle collisions. An external source
of metabolic energy is coupled to the polar vibrations,
and the bath is assumed to be constantly kept at a fixed
temperature 7, by an efficient homeostatic mechanism.
Next, as the first step in the NSOM, it is necessary to
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choose the basic variables deemed appropriate for the
description of the macroscopic state of the system. We
take the energy of the thermal bath,

E,(t)=Tr [ 3 #Q(blb,+1)p(1,0) | , (1a)
q

the population of the polar vibrations,
vo()=Tr{ala p(£,0)} , (1b)

and the amplitudes of oscillation,
(aglt)=Tr{ap(1,0)} ,

+ (IC)

(a,lt)*=Tr{ayp(1,0)} ,
where a and b (a' and b') are annihilation (creation)
operators in the corresponding vibrational states of wave
vector q, {1 is the frequency-dispersion relation of the
modes of the bath, and, finally,

p(t,0)=exp [—¢(t)—BoH,— S F,(t)ala,
q

-3 [fq(t)aq+f;(t)a:;]J @)

q

is the auxiliary (or coarse-grained) nonequilibrium opera-
tor in the NSOM, the whole (fine-grained) NSO being a
functional of it [7]. In Eq. (2), By=1/kT,, ¢(t) ensures
the normalization of p, and F and f are the other
Lagrange multipliers that the variational approach to the
NSOM introduces [7]; H, is the Hamiltonian of the bath.
Further, we note that, introducing the canonical transfor-
mation (reminiscent of Glauber’s transformation to
coherent states in laser theory [10]),

ag=a,—(a4lt), 3)

one finds that

(aglt)=—frt)/F (1), (4a)
Vo) =Vg(1)+ [Cagl)|?, (4b)
where
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_ _ ¢ F )
Vo(t)=[e ¢

—1]7! (4c)
is the polar-mode population in the absence of the excita-
tion of amplitude (a |t ).

Applying the NSOM transport theory in the so-called
second-order approximation in relation theory (SOART)
[9] and using Zubarev’s approach [11] to the NSOM, we
find the equations of evolution
J
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d
o vq(t)
where I is the pumping intensity rate, 7 is a relaxation
time associated with the decay of a polar vibration in two
acoustic vibrations in the bath, +° is the equilibrium
value, and & is a lengthy collision operator associated
with the collisions of two polar phonons with one acous-
ticlike phonon. They are given by

I, =7 ', () =)= d4(1) 5

127 1 (1) BHQ,
e __Z—;E q’| a [MgMgrge "8 Qquqg— Qg0 )+ g—8(Qq—g+ Q=) , (6a)
A )
Folt >—~—2|V‘2’|2nq+q{[1+v AL +Tg()] =T (DTg(1)e” 9 18(Q | ¢ — g — )
(=)
2|V‘2’ g g (T O+ 7] = [1+ T (7,091 8(Qy_ ¢+ g —og)
(2) = —Bhisg’ = (e
EI nq —q{Fg(O)[ 117 (2)]e —[1+7 () [7(1)}8(Qg 4 g — g T @g) , (6b)
[
where choose 7o=~T1,(=7), g,7=8,7~10"3, 0,=10"3 sec ™!, and
A =oytag , 6c) A=2X 1_012 iec_‘; Q,=sq with _s=.105 cm/sec and we
write S =1,7=1,7 for the pumping intensities. The re-
A; q—)= W~y (6d) sult is shown in Fig. 1: One may clearly see the onset of
V1 and V'? are the matrix elements of the interaction

involving, respectively, collision of one polar phonon
with two acoustic phonons and collision of two polar
phonons with one acoustic phonon, 7, is the equilibrium
Planckian distribution of acoustic phonons at tempera-
ture T, and @, is the polar-mode frequency-dispersion
relation.

Equation (5) is then of the type proposed by Frohlich,
where the nonlinear terms in & account for the transfer
of energy (through mediation of the acoustic phonons)
from the high-frequency to the low-frequency modes,
leading to Frohlich-Bose condensation. Let us show this
in numerical calculations. Taking into account the men-
tioned type of energy transfer, we introduced a quite
simplified model, that is, we take a mode as representa-
tive of all high-frequency modes (index O below), and
another for the low-frequency modes (index 1 below). We
are then left with a coupled set of equations, namely,

%Vo(t)zlo_ﬁ)_l[vo( —v31—g meP (1)
+gmv (1) —g, v (t)Wy(t) , (7a)
E?t v(O=I,—7 ' [%() =] —gom¥,(1)
+goneP By (1) +govo( )V, (1), (7b)
where g, and g, are coupling constants, A =w,— w,, and
n=[exp(BAA)—1]" . (8)

After a certain transient has elapsed (estimated to be of
the order of picoseconds (12), a steady state is attained,
i.e., 39 /0t =0 in Egs. (7). For a numerical solution we
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FIG. 1. Population of the representative modes of high fre-

quency, ¥, and that of the representative modes of low frequen-
cy, vy, as a function of the source power.
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the Frohlich effect, that is, a large increase of population in the low-frequency modes, which follows at an intensity
threshold (roughly given by the value of S where v, steeply increases) of 500. Figure 2 shows, for the case of an a-helix
protein, the domain in frequency space in which the Frohlich condensate occurs [12].

We consider now the dynamic aspects associated with the propagation of signals in Fréhlich condensate, that is, we
look for quantities (aq [t ) that, in SOART-NSOM, satisfy the equations of evolution

%(aq|t)=-—i(7)q(aq|t)——I"q(aqlt)—iWq(aqlt)*+I"q(aq|t)*+qzq [R
112

a,a,$@q, 1) Cag [t)(ag +q —qlt)*+c.c.]

9)

and the accompanying complex conjugated equation, where &;=wq,+ W,

prALE)

21, ~7'_1+ E‘ 2) 2 Ng+qlle ' —1)W—118(wg+ oy — Qg4 q)

. - ' — B
+% SV g gl (14+7)e™ =7 ™4 e T 98(0y—wg—Qy_g)Fe T B(0g— g+ 0y}, (10)
2

with 7, of Eq. (6a) [we omit to write down the long expression for W (it is a term of renormalization of frequency of no
relevance in what follows)], and

(2) |2 — ie) 1 jie)!
Rgq, =i |Vqlqz {(wq1+qu Qq1+q2+ze) +(mq]+mq2+ﬂql+qz+ze)
. v—1 _ . s y—1
+lwg —wg, + Qg 4q,Ti€) " +Hwg —wq —Qq 1q,TiE) 7}, (11)
f
where € is to be taken in the limit +0. we obtain
Equation (9) is of the Davydov-soliton type, but with
the presence of the damping term with damping constant ., 0 _ a?
I'. We mention that if we approximate the polar- i ot Ylx, 1) fiwy + i ax? Y(x,1)
vibration frequency dispersion by v, =w,—ag 2, where a
is a constant (a good approximant in real cases), after —i# f dx'T'(x —x')P(x',t)
neglecting the coupling terms with the conjugated equa-
tion, once we introduce the average field operator in the + fdx ‘dx"'R (x',x" )(x’,t)
continuum (in one dimension)
Xp(x",t)p*(x,t) , (13)
Y(x, )= z(a ltYels (12) v v
where
R(x,x"= 3 Rgqe ™™™, (142)
9149,
25 I | l
2 . .
X107 D(x—x')= 3 T e (14b)

q

|

20

Equation (13) is a nonlinear Schriédinger-type equation
with damping [13]. In a local approximation, Eq. (13) be-
comes, except for the term in ', Davydov’s equation for
the soliton. Here the damping effect governed by the T
of Eq. (10) is clear. Inspection of Eq. (10) tells us that the
damping constant implies in the near-equilibrium condi-
tion a lifetime for the excitation of the order of 7, i.e., in

— the picosecond range. However, the nonlinear contribu-
_,\—J\’\ tions are responsible for the fact that with increasing
population ¥ the lifetime decreases for the high-frequency

| RO
: ! modes, while it increases for the low-frequency modes.

8 8.5 9 95 10 L . h del of R
UENCY (IO'ZHz) et us again resort to the mo. el of two representatlve
FREQ sets of modes as already described. Numerical calcula-

FIG. 2. Modes (in frequency space) in Fréhlich’s condensate tions lead to the results shown in Fig. 3.

for a one-dimensional model for the a-helix protein. After Ref. Clearly the situation is substantially modified if the ex-
[12]. citation propagates in the nonequilibrium background
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FIG. 3. Reciprocal _lifetime (T=T7) of the representative
high-frequency modes, Iy, and that of the low-frequency modes,
I}, as a function of the power source.

provided by Frohlich’s condensate. We reemphasize that
this is the result of the fact that the damping constants
depend on the actual state of the system, being affected
by the nonlinear kinetic effects that are responsible, on
the one hand, by Frohlich effect, and, on the other, by

2249

Davydov’s mechanism for exciton propagation. Conse-
quently, while there occurs a very rapid damping of am-
plitudes corresponding to the high-frequency modes,
those at low frequencies become undamped. Hence, in
the expression for the average field operator in the con-
tinuum, Eq. (12), following a very short time (sub pi-
cosecond range) after the exciting pulse initiating the
propagation of the signal, only the contributions from the
modes in the condensate survive (see Fig. 2). In terms of
energy, we comment that if the metabolic energy is pro-
vided by hydrolysis of adenosine 5'-triphosphate (ATP)
(7.3 kcal/mol), and if there is total absorption of this en-
ergy in the process, to sustain the Frohlich condensate
for a signal to propagate during, say, 107° sec (group ve-
locity is expected to be of the order of 10° cm/sec; then
the travel length is 1 cm) would require roughly 10!
moles of ATP, a seemingly accessible value. (This value
greatly decreases if one includes double excitation instead
of the single excitation we considered.)

Summarizing, our results show that propagation of a
coherent Davydov-soliton-like excitation, composed of
low-lying excited vibrational states, is possible. This propa-
gation can travel long distances if metabolic energy is pro-
vided to produce a Frohlich-Bose-Einstein-like condensa-
tion, in an open system under nonequilibrium thermo-
dynamic conditions. As final points we mention that
Frohlich’s condensation and propagation of Davydov’s
soliton are quantum effects, which are nonexistent in clas-
sical theory, and that there exists a certain similitude of
the phenomenon described here with laser action.
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